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extend beyond one loop. With the factorization the large logarithms in the perturbative

function can be simply resummed. Our work shows that the result of collinear factoriza-

tion for the decay can be derived from that of TMD factorization. Therefore, the two

factorizations for the case here are simply related to each other.
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1. Introduction

Exclusive B-decays play an important role for testing the standard model and seeking

for new physics. Experimentally they are studied intensively. Theoretically, there are

two approaches of QCD factorization for studying these decays. One is based on the

collinear factorization [1], in which the transverse momenta of partons in a B-meson are

integrated out and their effect at leading twist is neglected. The collinear factorization

has been proposed for other exclusive processes for long time [2]. Another one is based

on kT -factorization [3] or pQCD approach, where one takes the transverse momenta kT of

partons into account at leading twist by means of kT -dependent light-cone wave function.

We will call such a factorization as transverse momentum dependent(TMD) factorization.

The advantage of the TMD factorization is that it may eliminate end-point singularities

in collinear factorization [4] and some higher-twist effects are included. The knowledge

of the transverse momentum dependent(TMD) light-cone wave function will provide a 3-

dimensional picture of a B-meson bound state. However, it was not clear how to define

the TMD light-cone wave function in a consistent way to perform a TMD factorization

because of light-cone singularities [5].

Similar problems also appear in defining TMD parton distributions and fragmentation

functions if one tries to do TMD factorization for inclusive processes. In general the light-

cone singularities appear if a parton emits gluons carrying momenta which are vanishingly

small in the +-direction but large in other directions in a light-cone coordinate system. In a

collinear factorization for an exclusive or inclusive process, these singularities are cancelled

between different contributions if the transverse momentum of the parton is integrated out.

If the transverse momentum is not integrated, the singularities are not cancelled.
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For inclusive processes like Drell-Yan, semi-inclusive DIS etc., it has been shown that

one can consistently define TMD parton distributions by using gauge links in the direction

off the light-cone direction and the TMD factorization of inclusive processes can be done

without light-cone singularities [6 – 9]. The TMD parton distributions defined with these

gauge links will depend on the deviation of the direction from the light-cone direction. The

evolution with this dependence is controlled by the Collins-Soper equation [6] which leads

to the so-called CSS resummation formalism [7 – 9]. This formalism is for resummation

of large logarithms appearing in the collinear factorization. In that sense the TMD- and

collinear factorization are related to each other. But the similar relation in exclusive B-

decays has not been studied.

We have proposed in [10] to consistently define the TMD light-cone wave function of

B-meson by using gauge links off the light-cone direction and studied its relation to the

usual light-cone wave function in the collinear factorization. With the consistent definition

it is important to show that the TMD factorization can be consistently performed. The

relation between two factorization approaches may be then established. As a first step

towards these goals we study in this paper TMD factorization for the radiative leptonic

decay of B-meson. We also plan to study TMD factorization for B → π form factor and

other decay processes. It should be noted that the definition of the TMD light-cone wave

function is not unique, different definitions are possible. A different definition can be found

in [11]. With different definitions the most important thing is to show that one can perform

TMD factorization consistently with one of these definitions, at least at one-loop level. To

our knowledge, there is so far no such a study beyond tree-level for exclusive B-decays. We

will show that with the definition given in [10] the factorization can be done at one-loop

level for the process studied in this paper.

The radiative leptonic B-decay has been studied extensively [12 – 16, 18]. The effect

of strong interaction in the decay is parameterized with form factors. These form factors

have been studied in [13 – 18] with QCD factorization. It has been shown that the form

factors can be factorized as a convolution with a perturbative coefficient function and the

light-cone wave function of the B-meson in the collinear factorization [14 – 16, 18]. In these

works the transverse momentum of partons is integrated out. It results in the convolution

only with the +-component of the parton momentum. In [13] the transverse momentum

of the parton is not integrated and is explicitly taken into account, but the consistency

of the definition of the TMD light-cone wave function is not addressed and the problem

of the gauge invariance of the definition is ignored. In [17] the decay is studied with kT -

factorization or TMD factorization, but the TMD light-cone wave function employed there

has the light-cone singularity.

With our gauge-invariant definition we can show with TMD factorization that the form

factors take the factorized form:

φ+ ⊗ S̃ ⊗ H. (1.1)

In the above φ+ is the TMD light-cone wave function, S̃ is a soft factor, H is a coefficient

function which can be calculated with perturbative QCD and is free from soft divergences.

φ+ and S̃ are well-defined matrix elements of QCD operators. The convolution here is
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not only with +-components but also transverse components of parton momenta. In this

paper we prove the factorization at one-loop level. We show that the cancellation of all

soft divergences is on a diagram-by-diagram basis. This is important for extending our

factorization beyond one-loop level. In the case studied in the paper, the TMD factorization

is similar to the collinear factorization because there is no parton or hadron in the final

state. But it is important to show first that the TMD factorization works for this simple

case and then extend the TMD factorization to other cases. An interesting fact with

the TMD factorization is that it provides a simple way to resum large logarithms in the

perturbative function H, as we will show in the paper.

As mentioned before, TMD factorization for an inclusive process can be related to

the corresponding collinear factorization. One can expect that such a relation also exists

for exclusive B-decays. Indeed, in the case studied here, such a relation exists and it is

simple: Both factorizations are equivalent, i.e., one can derive the result of the collinear

factorization from our TMD factorization. We will show this in this work. One reason for

this simple relation is that there is no hadron, hence any parton in the final state.

Our paper is organized as the following: In the next section we define the TMD light-

cone wave function and give its one-loop result in detail with a general partonic state,

which will be used to perform TMD factorization. A detailed discussion about the TMD

light-cone wave function and its relation to the usual light-cone wave function in collinear

factorization can be found in [10]. In section 3 we introduce our notation for the decay and

the result of the factorization at tree-level. In section 4 we will complete the factorization

at one-loop level and determine the soft factor. In section 5 we show that the result of the

collinear factorization can be derived from that of the TMD factorization and establish the

relation between the two factorizations for the decay. In section 6 we will make an attempt

to re-sum large logarithms in TMD factorization. Section 7 is our conclusion and outlook.

2. A consistent definition of the TMD light-cone wave-function

In this section we give our definition of the TMD light-cone wave function and its one-loop

result in detail with a general partonic state. A brief report of the result and the study

of the relation to the light-cone wave function in the collinear factorization can be found

in [10].

We will use the light-cone coordinate system, in which a vector aµ is expressed as

aµ = (a+, a−,~a⊥) = ((a0 + a3)/
√

2, (a0 − a3)/
√

2, a1, a2) and a2
⊥ = (a1)2 + (a2)2. For b-

quark we will use the heavy quark effective theory(HQET). To define the TMD light-cone

wave function we introduce a vector uµ = (u+, u−, 0, 0) and the definition is given in the

limit u+ ¿ u− [10]:

φ+(k+, k⊥, ζ, µ) =

∫

dz−

2π

d2z⊥
(2π)2

eik+z−−i~z⊥·~k⊥

×〈0|q̄(z)L†
u(∞, z)γ+γ5Lu(∞, 0)h(0)|B̄(v)〉|z+=0, (2.1)
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where h(x) is the b-quark field in HQET. and Lu is the gauge link in the direction u:

Lu(∞, z) = P exp

(

−igs

∫ ∞

0
dλu · G(λu + z)

)

. (2.2)

In the above, the B-meson moves with the velocity vµ = (v+, v−, 0, 0), i.e., in the z-

direction. The limit should be understood that we do not take the contributions propor-

tional to any positive power of u+/u− into account. This definition is gauge invariant in

any non-singular gauge in which the gauge field is zero at infinite space-time. It has not the

mentioned light-cone singularity as we will show through our one-loop result, but it has an

extra dependence on the momentum k+ through the variable ζ2 = 4(u · k)2/u2 = ζ2
u(k+)2,

or an extra dependence on ζ2
u. The evolution with the renormalization scale µ is simple:

µ
∂φ+(k+, k⊥, ζ, µ)

∂µ
= (γq + γQ)φ+(k+, k⊥, ζ, µ), (2.3)

where γq and γQ is the anomalous dimension of the light quark field q and the heavy quark

field h in the axial gauge u · G = 0, respectively. In the remainder of the paper we will

not indicate the µ-dependence explicitly if it does not cause any confusion. It should be

noted that one can not simply relate φ+(k+, k⊥, ζ) by integrating k⊥ to the light-cone wave

function in the collinear factorization, whose definition can be found in [19]. The reason

for this has been discussed in detail in [10].

To perform TMD factorization one needs to calculate the wave function with pertur-

bative QCD, in which the B-meson is replaced by a partonic state. We take the partonic

state |b(mbv + kb), q̄(kq)〉 to replace the B-meson in the definition, the momenta are given

as

kµ
q = (k+

q , k−
q , ~kq⊥), kµ

b = (k+
b , k−

b ,−~kq⊥). (2.4)

These partons are on-shell, i.e., k2
q = m2

q and v · kb = 0 in HQET. It should be noted that

we take a finite kq⊥ without loosing generality. The quark mass mq will regularize collinear

singularities. We also introduce a gluon mass λ to regularize infrared singularities. The

variable k+ of the wave function is from 0 to ∞ in the heavy quark limit. Actually, from

the momentum conservation, it is from 0 to P+ = mbv
+ + k+

b + k+
q . Under the limit

mb → ∞ we have P+ → ∞. As discussed in [10], if we set P+ to be ∞ at the beginning,

it may result in some ill-defined distributions. Therefore we should take a finite P+ in the

calculation and take the limit P+ → ∞ in the final result. For results obtained in this

paper we will take the limit where it does not introduce any problem.

At tree-level, the wave function reads:

φ
(0)
+ (k+, k⊥, ζ) = v̄(kq)γ

+γ5u(kb)δ(k
+ − k+

q )δ2(~k⊥ − ~kq⊥). (2.5)

We will always write a quantity A as A = A(0)+A(1)+· · ·, where A(0) and A(1) stand for tree-

level- and one-loop contribution respectively. At one-loop one can divide the corrections

into a real part and a virtual part. The real part comes from contributions of Feynman

diagrams given in figure 1. The virtual part comes from contributions of Feynman diagrams

given in figure 2, these contributions are proportional to the tree-level result.
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Figure 1: Diagrams of one-loop contributions. Thick lines stand for b-quark, double lines represent

gauge links.

To illustrate how to calculate these contributions and how the limit u+ ¿ u− is taken,

let us consider the contribution from figure 1c. After integrating the −-component of the

momentum carried by the exchanged gluon the contribution reads:

φ+(k+, k⊥, ζ)|1c = −2αs

3π2
v̄(kq)γ

+γ5u(kb)u · vθ(k+ − k+
q )

· 2q+

v+(q2
⊥ + λ2) + 2v−(q+)2 + i0

· 1

u+(q2
⊥ + λ2) + 2u−(q+)2 + i0

, (2.6)

with q+ = k+
q − k+ and ~q⊥ = kq⊥ − k⊥. If we simply set u+ = 0, the contribution is

proportional to 1/(k+ − k+
q ) and divergent at k+ = k+

q . This is the mentioned light-cone

singularity. With the nonzero u+ the contribution is finite for any k+. The contribution in

the limit u+ ¿ u− can be derived by taking the contribution as a distribution of k+ and

it reads:

φ+(k+, k⊥, ζ)|1c = −2αs

3π2
v̄(kq)γ

+γ5u(kb)

·
[(

θ(k+ − k+
q )

q+(q2
⊥ + λ2 + ζ2

v (q+)2)

)

+

− δ(k+ − k+
q )

1

2(q2
⊥ + λ2)

ln
ζ2
u

ζ2
v

]

+ O(ζ−2
u ),

ζ2
u =

2u−

u+
=

ζ2

(k+)2
, ζ2

v =
2v−

v+
. (2.7)

In the above the limit P+ → ∞ is already taken. From the result we can see that the

light-cone singularity is regularized with the finite but large ζ2
u. The other contributions of

the real part are:

φ+(k+, k⊥, ζ)|1a =
2αs

3π2
v̄(kq)γ · v(γ · (q − kq) + mq)γ

+γ5u(kb)F1

F1 = −i

∫

dq−

2π
· 1

(q − kq)2 − m2
q + i0

· 1

q2 − λ2 + i0
· 1

v · q + i0
,

φ+(k+, k⊥, ζ)|1b =
2αs

3π2
v̄(kq)γ

+γ5u(kb)

·
[

k+

∆q

(

θ(k+
q − k+)

k+
q − k+

)

+

+
1

2(q2
⊥ + λ2)

δ(k+ − k+
q ) ln

ζ2

q2
⊥ + λ2

]

,

∆q = k+
q ((q⊥ − xkq⊥)2 + x2m2

q + (1 − x)λ2), x = 1 − k+

k+
q

,

φ+(k+, k⊥, ζ)|1d = −2αs

3π2
v̄(kq)γ

+γ5u(kb)δ(k
+ − k+

q )
1

q2
⊥ + λ2

. (2.8)
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Figure 2: The virtual part of the one-loop correction.

The integral F1 for the contribution from figure 1a can be done easily, but it results in a

lengthy expression. We will show later that the contribution will not affect the perturbative

coefficient function H.

The virtual part of the one-loop correction is from the Feynman diagrams given in

figure 2. Contributions from each diagrams are:

φ+(k+, k⊥, ζ)|2a = φ+(k+, k⊥, ζ)|2b = φ+(k+, k⊥, ζ)|2e = φ
(0)
+ (k+, k⊥, ζ) · αs

3π
ln

µ2

λ2
,

φ+(k+, k⊥, ζ)|2c = −φ
(0)
+ (k+, k⊥, ζ) · αs

3π
ln

µ2

λ2
ln

ζ2
u

ζ2
v

,

φ+(k+, k⊥, ζ)|2f = φ
(0)
+ (k+, k⊥, ζ) · αs

6π

[

2 ln
µ2

m2
q

+ 2 ln
ζ2

m2
q

− ln2 ζ2

m2
q

− 2 ln
m2

q

λ2
ln

ζ2

m2
q

− 2π2

3
+ 4

]

,

φ+(k+, k⊥, ζ)|2d = φ
(0)
+ (k+, k⊥, ζ) · αs

6π

[

− ln
µ2

m2
q

+ 2 ln
m2

q

λ2
− 4

]

, (2.9)

The complete one-loop contribution φ
(1)
+ is the sum of contributions from the 10 Feynman

diagrams in figure 1 and figure 2. With these results one can derive the evolution of ζ. For

this we transform the wave-function into the impact parameter b-space:

φ+(k+, b, ζ, µ) =

∫

d2k⊥ei~k⊥·~bφ+(k+, k⊥, ζ, µ), (2.10)

the evolution reads:

ζ
∂

∂ζ
φ+(k+, b, ζ, µ) =

[

−4αs

3π
ln

ζ2b2e2γ−1

4
− 2αs

3π
ln

µ2e

ζ2

]

φ+(k+, b, ζ, µ). (2.11)

The first factor is the famous factor K + G [6, 7], the last factor comes because we used

HQET for the heavy quark.

Before ending the section, we briefly discuss the heavy quark limit P+ → ∞. For

the usual light-cone wave function, this limit will result in that the wave function is not

– 6 –
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normalizable as found in [19, 20] and it is shown through an explicit calculation with

perturbative theory in [10]. For the TMD light-cone wave function it is normalizable if the

transverse momentum is not integrated out. When we transform the TMD light-cone wave

function into b-space, we should keep P+ finite.

3. Notations and factorization at tree level

We consider the radiative decay of the B-meson B̄ which contains at least a b-quark and

a light anti-quark q̄:

B̄ → γ + ` + ν̄. (3.1)

We take a frame in which B̄ moves in the z-direction with the velocity vµ = (v+, v−, 0, 0)

and the photon with the momentum pµ = (0, p−, 0, 0). It is worth to mention here that

this decay has not been observed so far. An upper bound for the branching ratio is given

in [21]:

Br(B̄ → γ + ` + ν̄) < 2.0 × 10−6. (3.2)

In the decay the effect of the strong interaction is controlled by a matrix element of

the operator q̄γµ(1 − γ5)b with b(x) being the b-quark field in the full QCD. Since we use

HQET for the heavy b-quark, the matrix element can be matched to HQET:

〈γ(ε∗, p)|q̄γµ(1 − γ5)b|B̄(v)〉 = f(µ)〈γ(ε∗, p)|q̄γµ(1 − γ5)h|B̄(v)〉, (3.3)

where f(µ) is the matching coefficient. It is given by:

f(µ) = 1 +
αs(µ)

3π

(

3 ln
mb

µ
− 2

)

+ O(α2
s). (3.4)

The HQET matrix element can be parameterized as

T µ =
1√
4πα

〈γ(ε∗, p)|q̄γµ(1 − γ5)h|B̄(v)〉

= εµνρσε∗νvρpσFV (v · p) + i
(

v · pε∗µ − v · ε∗pµ
)

FA(v · p). (3.5)

In the rest frame of B̄, v · p is the energy of the photon. The invariant v · p can be

from 0 to MB/2. The photon is emitted by quarks inside the B-meson. If v · p is large,

i.e., v · p À ΛQCD those quarks will change their momenta significantly, i.e., the emission

becomes a short-distance process. This leads to that those form factors, hence the matrix

element can be studied with perturbative QCD, in which one can separate short-distance-

and long distance effect by factorization.

To show the factorization, one usually replaces hadronic states with reasonable parton

states, then calculate processes which need to be factorized and nonperturbative objects like

wave functions in our case to extract the perturbative coefficient functions. A factorization

means at least that those coefficient functions do not contain any soft divergence. For

our purpose we replace the B̄ state |B̄〉 with the partonic state |q̄b〉. The momenta of the

partons are the same as in eq. (2.4). At tree-level the contribution to the matrix element

is given by the two diagrams in figure 3. The second diagram will not contribute in the

– 7 –
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Figure 3: Tree-level contribution to the matrix element. The thick line is for the b-quark, the

black dot denotes the insertion of the operator.

heavy quark limit by noting the fact v · ε∗ = 0 for a real photon. The tree-level amplitude

T µ reads:

T (0)
µ = Qqv̄(kq)γ · ε∗ · γ · (p − kq) + mq

(p − kq)2 − m2
q

γµ(1 − γ5)u(kb), (3.6)

where Qq is the charge fraction of q̄. In TMD factorization one will neglect the transverse

momentum of initial partons in nominators of propagators but keep it in the denominators.

The case studied here is rather special because the denominator does not depend on the

transverse momentum. With a little algebra one can show that

T (0)
µ = − Qq

2p · kq
v̄(kq)γ · ε∗γ · pγµ(1 − γ5)u(kb) + · · ·

=
iQq

2v · p
[

εµνρσε∗νvρpσ + i
(

v · pε∗µ − v · ε∗pµ

)]

· 1

k+
q

v̄(kq)γ
+γ5u(kb) + · · · , (3.7)

where · · · denotes the neglected kq⊥-dependence from the quark propagator and the con-

tribution from the partonic state which does not have the same quantum numbers as B̄

does.

With the tree-level result of the TMD light-cone wave function, we obtain the factor-

ization for those form factors:

FV = FA =
iQq

2v · p

∫

dk+d2k⊥φ+(k+, k⊥, ζ, µ)
1

k+
. (3.8)

At the orders considered in the work, FV is always the same as FA. We will write our

factorization formulas as:

FV = FA =
iQq

2v · p

∫

dk+d2k⊥dl+d2l⊥φ+(k+, k⊥, ζ)S̃(l+, l⊥, ζu)θ(k+ + l+)H(k+ + l+, ζu),

(3.9)

so that at the leading order of αs the perturbative coefficient function H and the soft factor

in perturbation theory at tree-level reads:

H(0)(k+, ζu) =
1

k+
, S̃(0)(k+, k⊥, ζu) = δ(k+)δ2(~k⊥). (3.10)

It is noted that at the leading order H does not depend on k⊥ in the case studied here,

while in the other cases like B → π transition it does. If one replaces the B-meson state

– 8 –
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Figure 4: One-loop contribution to the matrix element. The thick line is for the b-quark, the black

dot denotes the insertion of the operator.

with a partonic state of off-shell partons, one can have a H(0) which depends on k⊥ [17].

But the amplitude T µ with the state of off-shell partons is not gauge-invariant. In general

it is not clear if the factorization with such a state can be made in a gauge invariant way.

At tree-level one can not determine the form of the soft factor S̃, because it is designed

to subtract infrared divergences at higher orders of αs. It should be a δ-function at tree

level. At one-loop level with the partonic state, the factorization formula takes the form:

T (1)
µ ∼ φ

(0)
+ ⊗ S̃(0) ⊗ H(1) + φ

(0)
+ ⊗ S̃(1) ⊗ H(0) + φ

(1)
+ ⊗ S̃(0) ⊗ H(0), (3.11)

the soft factor should be chosen so that all soft divergences of T
(1)
µ are contained in the

second- and third term and H(1) is free from any soft divergence. The soft factor should

also be chosen so that the factorization can be extended beyond one-loop level.

4. The soft factor and factorization at one-loop level

In this section we will perform TMD factorization at one-loop level and determine the op-

erator form of the soft factor. The perturbative coefficient function will also be determined

at one-loop level. Let us first consider the one-loop corrections to the amplitude T µ. The

corrections are from diagrams given in figure 4.

The contribution from figure 4a reads:

T µ|4a = iQqg
2
sCF

∫

d4l

(2π)4
v̄(kq)γ · v γ · (kq + l)

(kq + l)2 − m2
q + iε

γ · ε∗ γ · (p − kq − l)

(p − kq − l)2 − m2
q + iε

·γµ(1 − γ5)
1

−v · l + iε

1

l2 − λ2 + iε
u(kb)

= iQqg
2
sCF

∫

d4l

(2π)4
v̄(kq)γ · v γ · (kq + l)

(kq + l)2 − m2
q + iε

γ · ε∗γ · pγµ(1 − γ5)u(kb)

· 1

−2p · (kq + l) + iε
· 1

−v · l + iε
· 1

l2 − λ2 + iε
+ O(E−2

γ ). (4.1)

It is easy to find that this contribution up to a power correction is exactly represented by

the contribution from φ+|1a to the third term in eq. (3.11). Therefore, this contribution

and φ+|1a is irrelevant for the determination of H(1) and S̃(1). Also, the contributions from

figure 4e and figure 4f to T
(1)
µ are reproduced by the contributions from φ+|2a and φ+|2d in
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the third term in eq. (3.11), respectively. The contributions from other diagrams to T
(1)
µ

are:

T µ|4b = T (0)
µ · αs

3π

[

ln
µ2

2kq · p
+ 2 ln

2kq · p
m2

q

]

,

Tµ|4c = T (0)
µ · αs

3π

[

− ln2

(

2p · kq

ζ2
v (k+

q )2

)

+ ln
µ2

ζ2
v (k+

q )2
+ 2 − 4

3
π2

]

,

T µ|4d = T (0)
µ · αs

3π

[

ln
2kq · p

µ2
− 1

]

. (4.2)

Our T µ|4b agrees with that of [14], but is not in agreement with that in [13]. The other

contributions are in agreement with [13]. In these contributions there are no infrared

singularities. They have only a collinear singularity from figure 4b, represented by ln mq.

The relevant contributions to φ
(1)
+ ⊗ S̃(0) ⊗ H(0) by using S̃(0) are:

Wb =

∫

dk+d2k⊥
1

k+

[

φ+|1b(k
+, k⊥) + φ+|2e(k

+, k⊥) + φ+|2f (k+, k⊥)
]

/v̄(kq)γ
+γ5u(kb)

=
αs

3πk+
q

{

2 + ln
µ2

ζ2
− 1

2
ln2 λ2

ζ2
+ 2 ln

ζ2

m2
q

+ ln
µ2

λ2
− 1

2
π2−

∫

d2k⊥
π

1

λ2+ k2
⊥

ln
λ2+ k2

⊥

ζ2

}

,

Wc =

∫

dk+d2k⊥
1

k+

[

φ+|1c(k
+, k⊥) + φ+|2b(k

+, k⊥) + φ+|2c(k
+, k⊥)

]

/v̄(kq)γ
+γ5u(kb)

=
αs

3πk+
q

{

ln
µ2

λ2
+ ln

µ2

λ2
ln

ζ2
v

ζ2
u

− 5

6
π2 − 1

2
ln2 λ2

ζ2
v (k+

q )2
−

∫

d2k⊥
π

1

λ2 + k2
⊥

ln
λ2 + k2

⊥

ζ2

}

,

Wd =

∫

dk+d2k⊥
1

k+
φ+|1d(k

+, k⊥)/v̄(kq)γ
+γ5u(kb) = − 2αs

3πk+
q

∫

d2k⊥
π

1

λ2 + k2
⊥

. (4.3)

Comparing the above two equations, we find that the collinear singularity from figure 4b

is reproduced by the contribution in Wb from figure 2f. But, there are many infrared

singularities in φ
(1)
+ ⊗ S̃(0)⊗H(0) ∼ Wa +Wb +Wc +Wd +We, where Wa is the contribution

from figure 1a and We is the sum of contributions from figure 2a and figure 2d. There are

even ultraviolet divergences. However these divergences are closely related to corresponding

infrared singularities, as they stand. Once these infrared singularities are subtracted, one

can expect that those ultraviolet divergences are subtracted too. As mentioned before,

the contributions of Wa and We represent those to the T µ from figure 4a, figure 4e and

figure 4f. To complete the factorization one needs to find the soft factor so that all infrared

singularities in Wb + Wc + Wd and also the divergent integrals over k⊥ are subtracted by

the soft factor.

Clearly all these infrared singularities are from the TMD wave functions, i.e., from

contributions from figure 1 and figure 2. By using the eikonal approximation one easily

finds that these singularities can be reproduced by the expectation value of the product of

gauge links:

S4(q
+, q⊥) =

∫

dz−d2z⊥eiq+z−−i~q⊥·~z⊥S4(z
−, z⊥),

S4(z
−, z⊥) =

1

3
Tr〈0|T

[

L†
ũ(z,−∞)L†

u(∞, z)Lu(∞, 0)Lv(0,−∞)
]

|0〉|z+=0,
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Lũ(z,−∞) = P exp

(

−igs

∫ 0

−∞

dλũ · G(λũ + z)

)

,

Lv(z,−∞) = P exp

(

−igs

∫ 0

−∞

dλv · G(λv + z)

)

, (4.4)

where the direction in Lũ is chosen as ũ+ À ũ−. The gauge link L†
ũ just simulates an

anti-quark q̄ in the initial state and Lv the b-quark in the initial state. If one only takes

this product of the gauge links into account, one can expect that the quantity

φ+(z−, b, ζ, µ)

S4(z−, b)
(4.5)

is free from infrared singularities. This is checked at one-loop level. However, because part

of contributions from φ
(1)
+ , which are from figure 1a, figure 2a and figure 2d, is already used

up to subtract soft divergences in T
(1)
µ , as discussed before, one can not expect that the

soft factor S̃ can be formed with S4 only. We will turn to this point later and concentrate

at moment on the perturbative results for S4.

At tree-level, the result is just a δ-function:

S
(0)
4 (q+, q⊥) = δ(q+)δ2(~q⊥). (4.6)

At one-loop level, there are contributions from diagrams which have a one-to-one corre-

spondence to those diagrams given in figure 1 and figure 2, in which one only needs to

replace the light-quark line with the double line of the gauge link L†
ũ. The corresponding

contributions as a distribution of q+ for the range −k+ < q+ < ∞ under the limits u+ → 0

and ũ− → 0 are:

S4(q
+, ~q⊥)|1a =

2αs

3π2

[

θ(q+)

q+(q2
⊥ + λ2 + ζ2

v (q+)2)
+

θ(−q+)

q+(q2
⊥ + λ2 + ζ2

ũ(q+)2)

]

+“imaginary part”,

S4(q
+, ~q⊥)|1b = −2αs

3π2

[

1

q2
⊥ + λ2 + ζ2

ũ(q+)2
θ(−q+)

(

1

q+

)

+

− 1

2
δ(q+)

1

q2
⊥ + λ2

ln
ζ2

q2
⊥ + λ2

]

S4(q
+, ~q⊥)|1c =

2αs

3π2

[

(

θ(q+)

q+(q2
⊥ + λ2 + ζ2

v (q+)2)

)

+

+
1

2
δ(q+)

1

q2
⊥ + λ2

ln
ζ2
u

ζ2
v

]

,

S4(q
+, ~q⊥)|1d = −2αs

3π2

δ(q+)

q2
⊥ + λ2

, (4.7)

and the contributions from the diagrams corresponding to those in figure 2 are:

S4(q
+, ~q⊥)|2a = S4(q

+, ~q⊥)|2b = S4(q
+, ~q⊥)|2d = S4(q

+, ~q⊥)|2e = S
(0)
4 (q+, ~q⊥) · αs

3π
ln

µ2

λ2
,

S4(q
+, ~q⊥)|2c = −S

(0)
4 (q+, ~q⊥)

αs

3π
ln

µ2

λ2
ln

ζ2
u

ζ2
v

,

S4(q
+, ~q⊥)|2f = −S

(0)
4 (q+, ~q⊥)

αs

3π
ln

µ2

λ2
ln

ζ2
u

ζ2
ũ

, (4.8)
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Figure 5: One-loop contribution to S2. The double lines represent the two gauge links. One is for

Lv, the other one is for L†
ũ.

with ζ2
ũ = 2ũ−/ũ+. If we identify the soft factor S̃(z−,~b) as S−1

4 (z−,~b), their contributions

to φ
(0)
+ ⊗ S̃(1) ⊗ H(0) can be grouped similarly as those to φ

(1)
+ ⊗ S̃(0) ⊗ H(0). They are:

Ua = −
∫

dl+d2l⊥
1

k+
q + l+

S4|1a(l
+, l⊥)

=
αs

3πk+
q

{

1

2
ln2 ζ2

v (k+
q )2

λ2
+

5π2

6
− 1

2
ln2 ζ2

ũ(k+
q )2

λ2
+ ∆

}

+ “imaginary part”,

Ub = −
∫

dl+d2l⊥
1

k+
q + l+

[S4|1b + S4|2e + S4|2f ] (l+, l⊥)

=
αs

3πk+
q

{

−∆ +
1

2
ln2 λ2

ζ2
ũ(k+

q )2
− ln

µ2

λ2
− ln

µ2

λ2
ln

ζ2
ũ

ζ2
u

+

∫

d2k⊥
π

1

k2
⊥ + λ2

ln
k2
⊥ + λ2

ζ2

}

,

Uc = −
∫

dl+d2l⊥
1

k+
q + l+

[S4|1c + S4|2b + S4|2c] (l
+, l⊥)

=
αs

3πk+
q

{

5

6
π2 +

1

2
ln2 λ2

ζ2
v (k+

q )2
− ln

µ2

λ2
− ln

µ2

λ2
ln

ζ2
v

ζ2
u

+

∫

d2k⊥
π

1

k2
⊥ + λ2

ln
k2
⊥ + λ2

ζ2

}

,

Ud = −
∫

dl+d2l⊥
1

k+
q + l+

S4|1d(l
+, l⊥) =

2αs

3πk+
q

∫

d2k⊥
π

1

k2
⊥ + λ2

,

Ue = −
∫

dl+d2l⊥
1

k+
q + l+

[S4|2a + S4|2d] (l
+, l⊥) = −2αs

3π
ln

µ2

λ2
, (4.9)

where ∆ is a divergent quantity:

∆ = lim
k+→0

ln
k+

q

k+

∫

d2k⊥
π

2

ζ2
ũ(k+

q )2 + k2
⊥

, (4.10)

which will be cancelled in Ua + Ub. Comparing the sum Ua + Ub + Uc + Ud + Ue with

Wb + Wc + Wd, we note first that the divergent integrals over k⊥ in Wb, Wc and Wd

are completely subtracted by those in Ub, Uc and Ud, respectively. Also the infrared

singularities with ln λ in Wb, Wc and Wd are completely subtracted by those in Ub, Uc and

Ud, respectively. The remaining infrared singularities are only from Ua and Ue.

These remaining singularities can be reproduced by the product of the gauge links:

S2 =
1

3
Tr〈0|T

[

L†
ũ(0,−∞)Lv(0,−∞)

]

|0〉. (4.11)
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At leading order S
(0)
2 = 1. At one-loop level, the contributions are from the diagrams given

in figure 5.

S2|5a = −αs

3π
ln

µ2

λ2
ln

ζ2
v

ζ2
ũ

+ “imaginary part”,

S2|5b = S2|5c =
αs

3π
ln

µ2

λ2
. (4.12)

Now we turn to the imaginary or absorptive part. In the amplitude T µ it has an absorp-

tive part from the box diagram figure 4a and its contribution is already contained in the

contribution from the TMD wave function in figure 1a. The remaining parts T µ can not

have an absorptive part. Therefore, one should eliminate possible absorptive part in the

soft factor. At one-loop level, the imaginary part from S4 is the same as that from S2. But

this is from perturbative theory. To eliminate the absorptive part one can simply take the

real parts of those products of gauge links. Therefore we determine the soft factor as:

S̃(z−,~b, ζu, µ) =
Re [S2(ζũ, µ)]

Re
[

S4(z−,~b, ζu, ζũ, µ)
] ,

S̃(k+, k⊥, ζ, µ) =
1

(2π)3

∫

dz−d2beik+z−−i~k⊥·~bS̃(z−,~b, ζu, µ). (4.13)

It should be noted that S2 and S4 depend on ζũ, but the soft factor as the ratio of them

does not depend on ζũ. With the defined soft factor, the form factors can be factorized as

in eq. (3.9). They take a compact form in the b-space:

FV = FA =
iQq

2v · p lim
b→0

∫

dk+dl+φ+(k+, b, ζ, µ)S̃(l+, b, ζu, µ)θ(k+ + l+)H(k+ + l+, ζu, µ).

(4.14)

The limit b → 0 should be taken after the integrations. With the results presented before,

we determine the perturbative coefficient function H as:

H(k+, ζu, µ) =
1

k+

{

1 +
2αs(µ)

3π

[

−1

2
ln2 2k · p

ζ2
v (k+)2

+
1

4
ln

ζ2
u

ζ2
v

(

ln
ζ2
u(k+)2

µ2
+ ln

ζ2
v (k+)2

µ2

)

+
1

2
ln

2k · p
ζ2
v (k+)2

+
1

2
ln

2k · p
ζ2
u(k+)2

− 1

2
− 5π2

6

]}

+ O(α2
s), (4.15)

which is free from any soft divergence. All soft singularities are cancelled on a diagram-by-

diagram basis. The cancellation on a diagram-by-diagram basis is important for extending

the factorization beyond one-loop level. General arguments for the factorization at any

loop can be given by performing an analysis of relevant reduced diagrams and infrared

power-counting. The perturbative coefficient function H here does not contain the double

log ln2 µ2 in contrast with that in the collinear factorization [14 – 16], instead of ln2 µ2 it

contains ln2 ζ2
u and other log terms. All of those log terms need to be resummed if they

can be large.

It should be noted that for the case studied here one may redefine the TMD light-cone

wave function by including the soft factor as φ′
+ = φ+ ⊗ S̃, so that the form factors take
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the form φ′
+ ⊗ H. Then our results look similar to those in the collinear factorization.

However, it is not clear if the same can be done for other processes, because they have not

been studied yet. Therefore, we leave the soft factor there explicitly.

5. Relation between two factorizations

In the section we show that the result of the collinear factorization for the decay can be

obtained from that of TMD factorization, which is given in the last section. Hence, a

simple relation between two factorizations is found for the decay.

In collinear factorization, the transverse momenta of partons are integrated out and

the collinear light-cone wave function can be defined as [19]:

Φ+(k+, µ) =

∫

dz−

2π
eik+z−〈0|q̄(z−n)L†

n(∞, z−n)γ+γ5Ln(∞, 0)h(0)|B̄(v)〉, (5.1)

with the gauge link Ln defined with the light-cone vector nµ = (0, 1, 0, 0):

Ln(∞, z) = P exp

(

−igs

∫ ∞

0
dλn · G(λn + z)

)

. (5.2)

By taking the same partonic state as given in section 2., the wave function can be calculated

with perturbative QCD. The result can be found in [10]. With this result and that in the

last section, one can easily derive the result in the collinear factorization:

FV = FA =
iQq

2v · p

∫

dk+Φ+(k+, µ)Hc(k
+, µ), (5.3)

where Hc is the perturbative coefficient function and is given by:

Hc(k
+, µ) =

1

k+

{

1 +
αs

3π

[

1

2
ln2 µ2

ζ2
v (k+)2

+ ln
2k · p
µ2

+ ln
2k · p

ζ2
v (k+)2

− ln2 2k · p
ζ2
v (k+)2

−3 − 7π2

12

]}

+ O(α2
s), (5.4)

where the logarithmic terms agree with those in [14 – 16]. The difference in constant terms

is caused by that we used HQET for T µ, while full QCD was used to calculate it in [14 – 16].

The TMD light-cone wave function has a factorized relation to Φ+ in b-space [10]. It

reads:

φ+(k+, b, ζ, µ) =

∫ ∞

0
dq+CB(k+, q+, b, ζ, µ)Φ+(q+, µ) + O(b), (5.5)

where the function CB can be determined by perturbative theory and is free from any

soft divergence. At leading order of αs the function CB(k+, q+, b, ζ, µ) is δ(k+ − q+). The

result of CB at one-loop level can be found in [10]. It should be noted that from the results

in section 2. the TMD light-cone wave function φ+(k+, k⊥, ζ) at one loop order in the

momentum space contains various infrared divergences. Some of them are proportional

to the tree-level result, i.e., to δ2(~q⊥), some of them take a form like 1/(q2
⊥ + λ2). These

singularities do not cancel if ~q⊥ goes to zero. But, when we transform φ+(k+, k⊥, ζ) into
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the b-space, i.e., when we integrate over k⊥, some of these singularities are cancelled, the

remaining singularities are just the same as those in Φ+. Therefore CB is free from any

soft divergences. The same also happens to the soft factor S̃ with the difference that the

infrared singularities are completely cancelled, if we transform it into the b-space, or we

integrate over the transverse momentum. The soft factor S̃ in b-space reads:

S̃(q+,~b, ζu, µ) = δ(q+) +
4αs

3π
θ(q+)

(

ln(b̃2ζ2
v (q+)2)

q+

)

+

(5.6)

+
2αs

3π
δ(q+)

[

ln(b̃2µ2)

(

ln
ζ2
u

ζ2
v

− 1

)

+
π2

6
+

1

2
ln2(b̃2(P+)2ζ2

v )

]

+ O(b2),

with b̃ = beγ/2. Here S̃(q+,~b, ζu, µ) should be taken as a distribution for q+ < P+. The

heavy quark limit implies P+ → ∞. As discussed before and in [10], we should take finite

P+ in the calculation and take the limit in the final result. The same also applies for

eq. (5.5), where the upper bound of q+ should be taken as P+. With these results our

factorization formula can be re-written as:

FV = FA =
iQq

2v · p lim
b→0

lim
P+→∞

∫ P+

0
dq+Φ+(q+, µ)

{

H(0)(q+, ζu, µ) + H(1)(q+, ζu, µ)

+

∫ P+

0
dk+C

(1)
B (k+, q+, ζ, µ)H(0)(l+, ζu, µ)

+

∫ P+

−q+

dl+S̃(1)(l+, b, ζu, µ)H(0)(l+ + q+, ζu, µ)

}

+ O(α2
s). (5.7)

With our results of C
(1)
B , S̃(1) and H(1) we reproduce Hc in eq. (5.4). Therefore, the two

factorizations with fixed orders of perturbative theory are equivalent.

6. Resummation of large logarithms

In general, one expects that the most important k+-region of φ+(k+, k⊥, ζ) for a convolution

with the wave function like eq. (4.14) will be around k+ ∼ ΛQCD. Also the important

region of the soft factor S̃(l+, l⊥, ζu) is with small l+, i.e., l+ ∼ ΛQCD. This results in

that H(1)(k+ + l+) will contain large single logarithms and large double logarithms and it

spoils the perturbative expansion of H. Those large logarithms should be resummed for a

reliable prediction.

In the collinear factorization in [14 – 16], the resummation can be done by introducing

a jet factor in the frame work of the soft collinear effective theory [22], or a jet factor in

the full QCD [18]. Similarly, we can also introduce a jet factor in our factorization for the

resummation. However, as we have seen before, our TMD light-cone wave function and

soft factor depend on the parameter ζu. This dependence can be used to resum those large

logarithms. Before showing this, let us first study the evolution of the soft factor.

The evolution with the renormalization µ and with the parameter ζu reads:

µ
∂

∂µ
S̃(k+, ~k⊥, ζu, µ) =

4αs

3π

[

ln
ζ2
u

ζ2
v

− 1

]

S̃(k+, ~k⊥, ζu, µ) + O(α2
s),

– 15 –



J
H
E
P
0
1
(
2
0
0
6
)
0
6
7

ζu
∂

∂ζu
S̃(k+, b, ζu, µ) =

4αs

3π

[

2γ − ln4 + lnb2µ2
]

S̃(k+, b, ζu, µ) + O(α2
s),

µ
∂

∂µ
φ+(k+, k⊥, ζ, µ) =

αs

π

[

1 +
2

3

(

2 − ln
ζ2
u

ζ2
v

)]

φ+(k+, k⊥, ζ, µ) + O(α2
s),

ζ
∂

∂ζ
φ+(k+, b, ζ, µ) =

[

−4αs

3π
ln

ζ2b2e2γ−1

4
− 2αs

3π
ln

µ2e

ζ2

]

φ+(k+, b, ζ, µ) + O(α2
s), (6.1)

where we also include the evolutions of the wave function for completeness. With these

equations, one can show that the form factors in eq. (3.9) or eq. (4.14) are independent of

ζ2
u, as expected. Also, their µ-dependence is compensated by the µ-dependence of f(µ) in

eq. (3.3) so that the matrix element 〈γ(ε∗, p)|q̄γµ(1 − γ5)b|B̄(v)〉 does not depend on µ.

To resum the large log terms, we first take an initial value ζu = ζu0 in eq. (4.14) so that

there are no large log terms introduced by ζu0 in the wave function and the soft factor.

Then there will be large log terms with ζu0 in the coefficient function H, which can be

re-expressed with little algebra as:

H(q+, ζu0, µ) =
1

q+

{

1 +
2αs

3π

[

1

4
ln2

(

ζ2
u0(q

+)2

eµ2

)

− 3

2
ln2

(

µ

q+

(

ζ4
vµ

2p−

)− 1

3

)

−1

3

(

ln
2p · v

µ
− 3

2

)2

− 5π2

6

]}

, (6.2)

where q+ = k+ + l+. For small k+ and l+ there are large log terms in the first line. These

terms can be resummed by using the ζu-evolution of H:

ζu
∂

∂ζu
H(q+, ζu, µ) =

2αs

3π

[

ln
ζ2
u(q+)2

µ2
− 1

]

H(q+, ζu, µ) + O(α2
s). (6.3)

Solving this equation we have:

H(q+, ζu0, µ) = exp

{

+
αs(µ)

6π

[

ln2

(

µ2e

ζ2
u0(q

+)2

)

− 2

3
ln2

(

ζ4
v (q+)4

2p−(q+)µ2

)]}

· 1

q+

{

1 +
2αs(µ)

3π

[

−1

3

(

ln
2p · v

µ
− 3

2

)2

− 5π2

6

]}

. (6.4)

All large log terms due to small +-momenta are now resummed in the exponential. To

eliminate the large log terms in the second line of the above equation, we can set µ = µH

with a large µH so that the ln(2p · v/µH) is a number of order 1. Then there are large

log terms due to large µH in the wave function and the soft factor. With the evolution

equations in eq. (6.1), we can evolute them to lower scales as µ = µ0. Finally we have for

the form factors:

FV = FA =
iQq

2v · p lim
b→0

∫

dk+dl+φ+(k+, b, k+ζu0, µ0)S̃(l+, b, ζu0, µ0)θ(k+ + l+)

·eSF (k++l+) · 1

k+ + l+

{

1 +
2αs(µH)

3π

[

−1

3

(

ln
2p · v
µH

− 3

2

)2

− 5π2

6

]}

, (6.5)
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with

SF (q+) =
αs(µH)

6π

[

ln2

(

µ2
He

ζ2
u0(q

+)2

)

− 2

3
ln2

(

ζ4
v (q+)4

2p−(q+)µ2
H

)]

+

∫ µH

µ0

dµ

µ

αs(µ)

π

(

1 +
2

3
ln

ζ2
u0

ζ2
v

)

. (6.6)

In the above all large logs are resummed in the factor eSF . The initial value µ0 should be

taken where perturbative QCD is still applicable. One may take µ0 = 1 ∼ 2GeV. For ζu0,

with our definitions of the TMD light-cone wave function and the soft factor, we should

have ζu0 À 1, although the physics here, i.e., the form factors, does not depend on ζu0.

However, one should not take a too large ζu0 to avoid large log terms in the wave function

and the soft factor. A detailed study of a reasonable choice of ζu0 and µ0 is needed when

one uses the factorization results for phenomenological applications.

For the resummed results one can also use the relation in eq. (5.5) and the result in

eq. (5.6) to express them in term of the usual light-cone wave function Φ+, as in the last

section. Then instead of the integrand C
(1)
B ⊗H(0) in eq. (5.7) we have a complicated inte-

grand C
(1)
B ⊗H(0)⊗eSF . Unfortunately, we are unable to calculate the integral analytically.

The same also applies to the term corresponding to the term in the third line of eq. (5.7).

Here, we only remind that our resummed form factors can be expressed as a convolution

of Φ+ with other functions.

7. Conclusion and outlook

As mentioned in the introduction, there are two approaches for exclusive B-decays. The two

approaches are not only different in their formulations but also in some predictions in com-

parison with experiment. This leads to controversial discussions, e.g., see [11, 14, 23, 24].

Since two approaches are from one fundamental theory-QCD, there must be some relations

between them. With a consistent definition of TMD light-cone wave functions these rela-

tions can be explored and predictions for exclusive B-decays from the two approaches may

be unified. For this purpose, a first step is to define the TMD light-cone wave function

consistently and to obtain relations between the TMD light-cone wave function and the

usual light-cone wave function in the collinear factorization. This has been done in our

previous work [10].

In this paper, we have shown that with the consistent definition of the TMD light-cone

wave function the TMD factorization for the radiative leptonic B-decay can be performed

consistently at one-loop level. In this factorization, beside the wave function as a non-

perturbative object, another nonperturbative object, which is the soft factor, must be

introduced, so that the perturbative coefficient function is free from any soft divergence.

The results are given in eq. (4.14) and eq. (4.15). An extension of our factorization beyond

one-loop level is possible.

The TMD light-cone wave function defined in [10] does not only depend on +- and

transverse components of parton momentum, but also depends on the parameter ζu which
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regularizes the light-cone singularity. This ζu-dependence can be used to resum large

logarithms in the perturbative coefficient function, as we have shown in section 6.

For the decay studied here, we can show that the result of collinear factorization can

be derived from that of our TMD factorization. Hence the two factorizations are related to

each other. This simple relation is to be expected because there is no hadrons, or partons

in the final state. In other cases, the relation can be expected to be complicated.

Having shown that TMD factorization works in the simple case, we are ready to explore

how TMD factorization works in other complicated cases and how it is related to the

collinear factorization in these cases. Works for this are in progress.
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